Answer:
![\text{A.}\ √(2)*√(18)\\\\\text{B.}\ √(2)*√(6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3zh028pgvlubgbriy4jdfne8c7ezm82ieh.png)
Explanation:
A: The root will be rational if the product of the numbers under the radicals is a perfect square. For this part, there are a couple of choices.
![\text{1.}\ √(2)*√(18)=√(36)=6\\\\\text{2.}\ √(6)*√(24)=√(144)=12](https://img.qammunity.org/2020/formulas/mathematics/high-school/o0x9a2pg9k581rgl5le3clzmd0dafaoo0w.png)
__
B: The root will be irrational if the product of the numbers under the radicals is not a perfect square. For this part, there are many choices.
![\text{1.}\ √(2)*√(6)=√(12)\\\\\text{2.}\ √(2)*√(12)=√(24)\\\\\text{3.}\ √(2)*√(24)=√(48)\\\\\text{4.}\ √(6)*√(12)=√(72)\\\\\text{5.}\ √(6)*√(18)=√(108)\\\\\text{6.}\ √(12)*√(18)=√(216)\\\\\text{7.}\ √(12)*√(24)=√(288)\\\\\text{8.}\ √(18)*√(24)=√(432)](https://img.qammunity.org/2020/formulas/mathematics/high-school/dcx97kn95rgcwawmmru4v6uddkyfvmcyyz.png)