Time taken by jerry alone is 10.1 hours
Time taken by callie alone is 8.1 hours
Solution:
Given:- For a certain prospectus Callie can prepare it two hours faster than Terry can
Let the time taken by Terry be "a" hours
So, the time taken by Callie will be (a-2) hours
Hence, the efficiency of Callie and Terry per hour is
![(1)/(a-2) \text { and } (1)/(a) \text { respectively }](https://img.qammunity.org/2020/formulas/mathematics/high-school/yra0vznybilfaa3rwigi55cf43z4gr002x.png)
If they work together they can do the entire prospectus in five hours
![\text {So, } (1)/(a-2)+(1)/(a)=(1)/(5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/350bxpxeljx98vijrgyw06m2qhystitw7n.png)
On cross-multiplication we get,
![(a+(a-2))/((a-2) * a)=(1)/(5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/cs5nxyo8bw7tubo4y7qsa9yl76v9ofncu0.png)
![(2 a-2)/((a-2) * a)=(1)/(5)](https://img.qammunity.org/2020/formulas/mathematics/high-school/y81lwg3xj0r41fas4l104os59ojuj3vwu2.png)
On cross multiplication ,we get
![\begin{array}{l}{5 *(2 a-2)=a *(a-2)} \\\\ {10 a-10=a^(2)-2 a} \\\\ {a^(2)-2 a-10 a+10=0} \\\\ {a^(2)-12 a+10=0}\end{array}](https://img.qammunity.org/2020/formulas/mathematics/high-school/vnqbgtynnrgues95rv3x0vzwr2raraq3am.png)
using quadratic formula:-
![x=\frac{-b \pm \sqrt{b^(2)-4 a c}}{2 a}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mkg1bcz54xxjkmnvipponepv9s5euixlgu.png)
![x=(12 \pm √(144-40))/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/a3nam42w25vdawsncae7ka7zpwo5lqnk7j.png)
![\begin{array}{l}{x=(12 \pm √(144-40))/(2)} \\\\ {x=(12 \pm √(104))/(2)} \\\\ {x=(12 \pm 2 √(26))/(2)} \\\\ {x=6 \pm √(26)=6 \pm 5.1} \\\\ {x=10.1 \text { or } x=0.9}\end{array}](https://img.qammunity.org/2020/formulas/mathematics/high-school/yv2e2lsbf7350bqdtqj2nhruzw29rpozn2.png)
If we take a = 0.9, then while calculating time taken by callie = a - 2 we will end up in negative value
Let us take a = 10.1
So time taken by jerry alone = a = 10.1 hours
Time taken by callie alone = a - 2 = 10.1 - 2 = 8.1 hours