Answer:
![\large\boxed{y-3=-(x+4)}\\or\\\boxed{y+4=-(x-3)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n45ohskxva9edk7xh0t99srbtevrmwcpqp.png)
Explanation:
The point-slope form of an equation of a line:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lwv5ftdd36i4idvu50qxfdgwxhdby4wlt5.png)
m - slope
(x₁, y₁) - point on a line
The formula of a slope:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fc06wy5n2hf2a0hmyba6df4ibmxk1cn53a.png)
We have two points (-4, 3) and (3, -4).
Substitute:
![m=(-4-3)/(3-(-4))=(-7)/(7)=-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/51xfws98qyty42wcpcu17vyw8yhtft0kpw.png)
Put the value of a slope and the coordiantes of the point (-4, 3) or (3, -4) to the equation of a line:
for (-4, 3)
![y-3=-1(x-(-4))\\\\y-3=-(x+4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yz7txhafufgswduj4i86wg33hwgmur8hay.png)
for (3, -4)
![y-(-4)=-1(x-3)\\\\y+4=-(x-3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/arazrz9oiwc3pgt8buy7vpxylvceyjq78q.png)