157k views
5 votes
An electron confined on one-dimensional infinite potential well has an energy of 180ev. What its wavelength?

User Karlitos
by
6.3k points

1 Answer

4 votes

The wavelength is 91.5 pm ( 91.5 Pico meter).

Explanation:

The formula can be expressed below for electron’s energy,


\text {Energy of electron}=(p^(2))/(2 m)

Where,

p = momentum

m= mass of electron

We know, mass of electron =
9.1 * 10^(-31) \mathrm{kg}

Energy of electron,
1 e V=1.6 * 10^(-19) \mathrm{J}

Therefore,
\text { energy of electron, 180 eV }=180 * 1.6 * 10^(-19) J

By substituting the known values in the equation, we get,


180 * 1.6 * 10^(-19)=(p^(2))/(2 * 9.1 * 10^(-31))


p^(2)=180 * 1.6 * 10^(-19) * 2 * 9.1 * 10^(-31)


p^(2)=5241.6 * 10^(-50)

Taking square root, we get


\text {Momentum, } p=72.399 * 10^(-25) \mathrm{kg} . \mathrm{m} / \mathrm{s}

We know,


\lambda=(h)/(p)

Here, h – Planck constant =
6.626 * 10^(-34) \mathrm{J.s}

So, the wavelength would be,


\lambda=(6.626 * 10^(-34))/(72.399 * 10^(-25))=0.0915 * 10^(-34+25)=0.0915 * 10^(-9) \mathrm{m}

Adding
10^(-3) in both numerator and denominator we get the value as


\lambda=0.0915 * 10^(-9) * (10^(-3))/(10^(-3))=0.0915 * 10^(3) * 10^(-12)=91.5 \mathrm{pm}

Where, pm – Pico meter -
10^(-12)

User B Furtado
by
6.2k points