81.5k views
3 votes
Find the range of the given function f(x)=(x-1)^2+1

a.) [1, infinity)
b.) (- infinity, infinity)
c.) [0, infinity)
d.) (- infinity, 1)

1 Answer

4 votes

Answer:

a.) [1, infinity)

Explanation:

The equation is that of a parabola that opens upward with vertex (1, 1). Hence the minimum value of f(x) is 1, and all values greater than that are part of the range: [1, ∞).

_____

The "vertex form" of the equation of a parabola is ...

f(x) = a(x -h)^2 + k

The vertex is at (h, k). When a > 0, the parabola opens upward. When a < 0, the parabola opens downward. Whichever way it opens, the value k is an extreme value and the limit of the range.

User Hampus Brynolf
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories