141k views
4 votes
Factor the trinomial 8x^2-12x-8

User Vemonus
by
8.0k points

1 Answer

4 votes

Answer:


(x-2)(8x+4)

Explanation:

we have


8x^(2) -12x-8

Equate to zero and find the roots of the quadratic equation

The formula to solve a quadratic equation of the form


ax^(2) +bx+c=0

is equal to


x=\frac{-b(+/-)\sqrt{b^(2)-4ac}} {2a}

in this problem we have


8x^(2) -12x-8=0

so


a=8\\b=-12\\c=-8

substitute in the formula


x=\frac{-(-12)(+/-)\sqrt{-12^(2)-4(8)(-8)}} {2(8)}


x=\frac{12(+/-)√(400)} {16}


x=\frac{12(+/-)20} {16}


x_1=\frac{12(+)20} {16}=2


x_2=\frac{12(-)20} {16}=-(1)/(2)

therefore


8x^(2) -12x-8=8(x-2)(x+(1)/(2))=(x-2)(8x+4)

User Ayaz Ali Shah
by
7.1k points