Answer:
![p+(1)/(2)ρV^(2)+ρg_(0)z-(1)/(2)ρcz^(2)=constant](https://img.qammunity.org/2020/formulas/physics/high-school/8gzxcgtxa3987lpzgf7s9brdetgseu67xr.png)
Step-by-step explanation:
first write the newtons second law:
F
=δma
![_(s)](https://img.qammunity.org/2020/formulas/chemistry/middle-school/bv2t4n1050mi7jaxhlq05tbglu0aa92nch.png)
Applying bernoulli,s equation as follows:
∑
![δp+(1)/(2) ρδV^(2) +δγz=0\\](https://img.qammunity.org/2020/formulas/physics/high-school/3wbbxitj6dlo7ss8mybpujlnjdftyx42h6.png)
Where,
is the pressure change across the streamline and
is the fluid particle velocity
substitute
for {tex]γ[/tex] and
for
![g](https://img.qammunity.org/2020/formulas/physics/high-school/60zgowi0iobdh77me4exg645z1uuvabj0v.png)
![dp+d((1)/(2)V^(2)+ρ(g_(0)-cz)dz=0](https://img.qammunity.org/2020/formulas/physics/high-school/4ha0hu2ge9fol3ivt7f465g2rd8yj5albn.png)
integrating the above equation using limits 1 and 2.
![\int\limits^2_1 \, dp +\int\limits^2_1 {((1)/(2)ρV^(2) )} \, +ρ \int\limits^2_1 {(g_(0)-cz )} \,dz=0\\p_(1)^(2)+(1)/(2)ρ(V^(2))_(1)^(2)+ρg_(0)z_(1)^(2)-ρc((z^(2))/(2))_(1)^(2)=0\\p_(2)-p_(1)+(1)/(2)ρ(V^(2)_(2)-V^(2)_(1))+ρg_(0)(z_(2)-z_(1))-(1)/(2)ρc(z^(2)_(2)-z^(2)_(1))=0\\p+(1)/(2)ρV^(2)+ρg_(0)z-(1)/(2)ρcz^(2)=constant](https://img.qammunity.org/2020/formulas/physics/high-school/ue9sh9mcs63ybjgqq1tei3g1er2dlc6q61.png)
there the bernoulli equation for this flow is
![p+(1)/(2)ρV^(2)+ρg_(0)z-(1)/(2)ρcz^(2)=constant](https://img.qammunity.org/2020/formulas/physics/high-school/8gzxcgtxa3987lpzgf7s9brdetgseu67xr.png)
note:
=density(ρ) in some parts and change(δ) in other parts of this equation. it just doesn't show up as that in formular