Final answer:
The reaction where 1 mole of H2CO(g) reacts with O2(g) to form CO2(g) and H2O(l) is exothermic, evolving -563 kJ of energy. This is represented in the balanced thermochemical equation with a negative enthalpy change (ΔH = -563 kJ).
Step-by-step explanation:
When 1 mole of H2CO(g) reacts with O2(g) to form CO2(g) and H2O(l), the reaction is exothermic because energy is released. The value of q in this context represents the amount of energy evolved during the reaction, which is -563 kJ (negative sign indicates energy is released by the system). Therefore, the balanced thermochemical equation incorporating the heat of reaction would be as follows:
H2CO(g) + O2(g) → CO2(g) + H2O(l) ΔH = -563 kJ
An exothermic reaction is characterized by the release of energy to the surroundings, with a negative enthalpy change (ΔH), indicating that the products are at a lower energy level than the reactants. Conversely, an endothermic reaction absorbs energy, with a positive enthalpy change, indicating that the products are at a higher energy level than the reactants.