Answer:
1.1775 x 10^-3 m^3 /s
Step-by-step explanation:
viscosity, η = 0.250 Ns/m^2
radius, r = 5 mm = 5 x 10^-3 m
length, l = 25 cm = 0.25 m
Pressure, P = 300 kPa = 300000 Pa
According to the Poisuellie's formula
Volume flow per unit time is
![V=(\pi * Pr^(4))/(8\eta l)](https://img.qammunity.org/2020/formulas/physics/college/94i0u11mdidew53py44pkcuf6iou97i3i4.png)
![V=(3.14 * 300000* \left ( 5* 10^(-3) \right )^(4))/(8* 0.250* 0.25)](https://img.qammunity.org/2020/formulas/physics/college/yqzdpgzc7sdy7h3ra134svbk2b7aut6i5r.png)
V = 1.1775 x 10^-3 m^3 /s
Thus, the volume of oil flowing per second is 1.1775 x 10^-3 m^3 /s.