Answer:
a = 9.94 m/s²
Step-by-step explanation:
given,
density at center= 1.6 x 10⁴ kg/m³
density at the surface = 2100 Kg/m³
volume mass density as function of distance
![\rho(r) = ar^2 - br^3](https://img.qammunity.org/2020/formulas/physics/college/oizew8dapgd5ocxoanz511onbp3e9xwo56.png)
r is the radius of the spherical shell
dr is the thickness
volume of shell
![dV = 4 \pi r^2 dr](https://img.qammunity.org/2020/formulas/physics/college/ribawd2h6kxk0rs77a976t5lui7zna6l9x.png)
mass of shell
![dM = \rho(r)dV](https://img.qammunity.org/2020/formulas/physics/college/biay0wv708f4ley7o5u7z0m1suh8lqeriv.png)
![\rho = \rho_0 - br](https://img.qammunity.org/2020/formulas/physics/college/yw2wsy47fm36l6f3b0whmxpeauwqc5xc4v.png)
now,
![dM = (\rho_0 - br)(4 \pi r^2)dr](https://img.qammunity.org/2020/formulas/physics/college/5dmjqulo0ddlw7vfzqlue39x7w58ztlfku.png)
integrating both side
![M = \int_0^(R) (\rho_0 - br)(4 \pi r^2)dr](https://img.qammunity.org/2020/formulas/physics/college/l2d4gyu0n31miui8t1amsj6ssbg66ubnj8.png)
![M = (4\pi)/(3)R^3\rho_0 - \pi R^4((\rho_0-\rho)/(R))](https://img.qammunity.org/2020/formulas/physics/college/37vf39s3xg5hvr47lbl376gtj79corqduu.png)
![M = \pi R^3((\rho_0)/(3)+\rho)](https://img.qammunity.org/2020/formulas/physics/college/vdxv3acr09lzoqjwo0aw04tn2w1uygiavh.png)
we know,
![a = (GM)/(R^2)](https://img.qammunity.org/2020/formulas/physics/college/zzxgaiape7el7j0760bq0blcrajwv7fpij.png)
![a = (G( \pi R^3((\rho_0)/(3)+\rho)))/(R^2)](https://img.qammunity.org/2020/formulas/physics/college/qd5ncf3bkafut72irb9tnbm8brilhcaswx.png)
![a =\pi RG((\rho_0)/(3)+\rho)](https://img.qammunity.org/2020/formulas/physics/college/n4bpl43w6w61v0qihtqbddno1461v5t46o.png)
![a =\pi (6.674* 10^(-11)* 6.38 * 10^6)((1.60* 10^4)/(3)+2.1* 10^3)](https://img.qammunity.org/2020/formulas/physics/college/to3x9430aoa9g25v4nxbdvtovnf6xv60cb.png)
a = 9.94 m/s²