106k views
5 votes
Suppose a basketball player is practicing shooting, and has a prob-ability .95 of making each of his shots. Also assume that his shots are in-dependent of one another. Using the Poisson distribution, approximate theprobability that there are at most 2 misses in the first 100 attempts

1 Answer

6 votes

Answer:

0.082

Explanation:

Number of attempts = n = 100

Since there are only two outcomes and in-dependent of each other, the probability of missing a shot = 1 - Probability of making each shot

p = 1 - 0.95 = 0.05

Possion Ratio (λ) = np where n is the number of events and p is the probability of the shot missing

λ = 100 x 0.05 = 5

Define X such that X = Number of misses and X ≅ Poisson (λ = 5)

P [X ≤ 2] = P [X = 0] + P [X = 1] + P [X = 2]

P [X ≤ 2] = e⁻⁵ + e⁻⁵ x 5 + e⁻⁵ x 5²/2!

P [X ≤ 2] = e⁻⁵ [1 + 5 + 5²/2!]

P [X ≤ 2] = e⁻⁵ x 12.25 = 0.082

The required probability that there are at most 2 misses in the first 100 attempts is 0.082

User Dorie
by
8.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories