To solve this problem it is necessary to apply the definition of Young's Module which states that
![Y_1 = ((F)/(A))/((\Delta l_0)/(l))](https://img.qammunity.org/2020/formulas/physics/college/s6amgw6sc1jiy8fki2q7lc3ee4dtxefh7k.png)
Where,
F = Force
A = Cross sectional Area
L = Length
= Initial Length
We need to find the ratio between the two values when the another values are constant, that is
![(Y_1)/(Y_2) = (((F)/(A))/((\Delta l_1)/(l)))/(((F)/(A))/((\Delta l_2)/(l)))](https://img.qammunity.org/2020/formulas/physics/college/1jp7j7srvwidcdmf2lhukthd6c103yw084.png)
![(Y_1)/(Y_2) = (\Delta l_2)/(\Delta l_1)](https://img.qammunity.org/2020/formulas/physics/college/i7bz19non2hzq1073ntekmd7os35t12ojh.png)
Re-arrange to find
![\Delta l_2,](https://img.qammunity.org/2020/formulas/physics/college/sfnn25011mflgqzvnspotdwk7xwahfe4db.png)
![\Delta l_2 = (9.4*10^9)/(1.6*10^(10))*3.7*10^(-5)](https://img.qammunity.org/2020/formulas/physics/college/c8b8r8zc3zzkbrkixbnxahcsm7oe5y9cwq.png)
![\Delta l_2 = 2.17*10^(-5) m](https://img.qammunity.org/2020/formulas/physics/college/7jg3ogn546jhuwb2ohcwqh22mu41029uya.png)
Therefore the bone stretch around
![2.17*10^(-5) m](https://img.qammunity.org/2020/formulas/physics/college/ienmv07xi8l56160gmr2xfe1537pgtd82g.png)