119k views
1 vote
The Tevatron acceleator at the Fermi National Accelerator Laboratory (Fermilab) outside Chicago boosts protons to 1 TeV (1000 GeV) in five stages (the numbers given in parentheses represent the total kinetic energy at the end of each stage): Cockcroft-Walton (750 keV), Linac (400 MeV), Booster (8 GeV), Main ring or injector (150 Gev) and finally the Tevatron itself (1 TeV). What is the speed of the proton at the end of each stage?

1 Answer

4 votes

Answer:

a)
v = c \cdot 0.04 = 1.2\cdot 10^(7) m/s

b)
v = c \cdot 0.71 = 2.1\cdot 10^(8) m/s

c)
v = c \cdot 0.994 = 2.97\cdot 10^(8) m/s

d)
v = c \cdot 0.999 = 2.997\cdot 10^(8) m/s

e)
v = c \cdot 0.9999 = 2.999\cdot 10^(8) m/s

Step-by-step explanation:

At that energies, the speed of proton is in the relativistic theory field, so we need to use the relativistic kinetic energy equation.


KE=mc^(2)(\gamma -1) = mc^(2)(\frac{1}{\sqrt{1-\beta^(2)}} -1) (1)

Here β = v/c, when v is the speed of the particle and c is the speed of light in vacuum.

Let's solve (1) for β.


\beta = \sqrt{1-(1)/(\left ((KE)/(mc^(2))+1 \right )^(2))}

We can write the mass of a proton in MeV/c².


m_(p)=938.28 MeV/c^(2)

Now we can calculate the speed in each stage.

a) Cockcroft-Walton (750 keV)


\beta = \sqrt{1-(1)/(\left ((0.75 MeV)/(938.28 MeV)+1 \right )^(2))}


\beta = 0.04


v = c \cdot 0.04 = 1.2\cdot 10^(7) m/s

b) Linac (400 MeV)


\beta = \sqrt{1-(1)/(\left ((400 MeV)/(938.28 MeV)+1 \right )^(2))}


\beta = 0.71


v = c \cdot 0.71 = 2.1\cdot 10^(8) m/s

c) Booster (8 GeV)


\beta = \sqrt{1-(1)/(\left ((8000 MeV)/(938.28 MeV)+1 \right )^(2))}


\beta = 0.994


v = c \cdot 0.994 = 2.97\cdot 10^(8) m/s

d) Main ring or injector (150 Gev)


\beta = \sqrt{1-(1)/(\left ((150000 MeV)/(938.28 MeV)+1 \right )^(2))}


\beta = 0.999


v = c \cdot 0.999 = 2.997\cdot 10^(8) m/s

e) Tevatron (1 TeV)


\beta = \sqrt{1-(1)/(\left ((1000000 MeV)/(938.28 MeV)+1 \right )^(2))}


\beta = 0.9999


v = c \cdot 0.9999 = 2.999\cdot 10^(8) m/s

Have a nice day!

User Lilyan
by
5.5k points