Answer:
Step-by-step explanation:
mass, m = 50 g
moment of inertia, I = 9 x 106-5 kg m^2
radius, r = 0.7 cm
(a) As it moving downwards
Let T be the tension in the string
T = m (g + a) .... (1)
where, a be the acceleration
τ = I α = T r
α = a / r
So, I x a / r = T x r
a = T r^2 / I
Substitute in equation (1) we get
a = m (g + a) r^2 / I
a = mgr^2 / (I - mr^2)
a = 0.050 x 9.8 x 0.007 x 0.007 / (9 x 10^-5 - 0.050 x 0.007 x 0.007)
a = 2.401 x 10^-5 / (87.55 x 10^-6)
a = 0.274 m/s^2
τ = I x α = I x a / r
τ = 9 x 10^-5 x 0.274 / 0.007
τ = 3.52 x 10^-3 Nm
(b) α = a / r
α = 0.274 / 0.007 = 39.14 rad/s^2