Answer:
![\mu_x=18\text{ hours}](https://img.qammunity.org/2020/formulas/mathematics/college/48nap5oe4xavx40wwo4kqu51yabzbomlh7.png)
![\sigma_x=4\text{ hours}](https://img.qammunity.org/2020/formulas/mathematics/college/7tv0rdo7yt9terfaw3tnpuvqb6ufwdtr4l.png)
Explanation:
We know that mean and standard deviation of sampling distribution is given by :-
![\mu_x=\mu](https://img.qammunity.org/2020/formulas/mathematics/college/uvawzy92n4rxv22xdka5vabr4g6kmlbslr.png)
![\sigma_x=(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/college/7mcgpoe42hhvdt6osylhuovp08pufmaqby.png)
, where
= population mean
=Population standard deviation.
n= sample size .
In the given situation, we have
n= 2
Then, the expected mean and the standard deviation of the sampling distribution will be :_
![\mu_x=\mu=18\text{ hours}](https://img.qammunity.org/2020/formulas/mathematics/college/gu0abi931t8xwsy9h2654q0to4w0w9h3m3.png)
[Rounded to the nearest whole number]
Hence, the the expected mean and the standard deviation of the sampling distribution :
![\mu_x=18\text{ hours}](https://img.qammunity.org/2020/formulas/mathematics/college/48nap5oe4xavx40wwo4kqu51yabzbomlh7.png)
![\sigma_x=4\text{ hours}](https://img.qammunity.org/2020/formulas/mathematics/college/7tv0rdo7yt9terfaw3tnpuvqb6ufwdtr4l.png)