(a) 1000
(b) 11100
(c) 11095.
Step-by-step explanation:
(a) If A1 is a subset of A2 and A2 is a subset of A3, then all the elements of A1 are in A2 and all the elements of A2 are in A3.
Then, n(A1 n A2) = 100, n(A2 n A3) = 1000 , n(A1 n A3) = 100 and n(A1 n A2 n A3) = 100.
So, we get
![n(A1\cup A2\cup A3)\\\\=n(A1)+n(A2)+n(A3)-n(A1\cap A2)-n(A2\cap A3)-n(A1\cap A3)+n(A1\cap A2\cap A3)\\\\=100+1000+1000-100-1000-100+100\\\\=1000.](https://img.qammunity.org/2020/formulas/mathematics/high-school/w093lxgh6gta284lcc95r40gg9x92jzqb7.png)
(b) If the sets are pairwise disjoint, then
n(A1 n A2) = n(A2 n A3) = n(A1 n A3) = n(A1 n A2 n A3) = 0.
So, we get
![n(A1\cup A2\cup A3)\\\\=n(A1)+n(A2)+n(A3)\\\\=100+1000+10000\\\\=11100.](https://img.qammunity.org/2020/formulas/mathematics/high-school/1ta96kp2q2nlf4wjrwv8gaumztbarxp8k0.png)
(c) If there are two elements common to each pair of sets and one element in all three sets, then
n(A1 n A2) = 2, n(A2 n A3) = 2, n(A1 n A3) = 2 and n(A1 n A2 n A3) = 1.
So, we get
![n(A1\cup A2\cup A3)\\\\=n(A1)+n(A2)+n(A3)-n(A1\cap A2)-n(A2\cap A3)-n(A1\cap A3)-n(A1\cap A2\cap A3)\\\\=100+1000+1000-2-2-2+1\\\\=11100-5\\\\=11095.](https://img.qammunity.org/2020/formulas/mathematics/high-school/ckqo3vb8i2zpvmdb2e98uzs9f0mlmeibv8.png)