To solve this problem it is necessary to apply the concepts related to the acceleration of gravity due to the force exerted by a start and the calculation of angular velocity as a function of acceleration and radius.
By definition we know that the acceleration exerted by the celestial body is given under the equation
![g = (GM)/(R^2)](https://img.qammunity.org/2020/formulas/physics/high-school/uav22u2qdhzbc3inyc1tc6yo4v8k27zyak.png)
Where,
G = Gravitational Universal Constant
M = Mass
R = Radius
The radius of Europa is
![R = (D)/(2) = (31838*10^3)/(2)](https://img.qammunity.org/2020/formulas/physics/college/qszatfh3ntdfq6mkhvj0nx1ksgifr555v2.png)
![R = 1569*10^3m](https://img.qammunity.org/2020/formulas/physics/college/koj0uuxw8359ehf6g7swo377zykrf1tagg.png)
Applying the gravitational equation,
![g = (GM)/(R^2)](https://img.qammunity.org/2020/formulas/physics/high-school/uav22u2qdhzbc3inyc1tc6yo4v8k27zyak.png)
![g = ((6.67*10^(-11))(4.8*10^(22)))/((1569*10^3)^2)](https://img.qammunity.org/2020/formulas/physics/college/dkou0yho7c58cwvx4ygzefhq1wc982diyc.png)
![g = 1.3m/s^2](https://img.qammunity.org/2020/formulas/physics/college/5esfgks5r3majcewvdk3u1kxu6ue0a4nzx.png)
Therefore the angular acceleration can be obtained through the kinematic equation
![a = r\omega^2](https://img.qammunity.org/2020/formulas/physics/college/4ctnu7pxwi7s8kuef29fzuyg00lg3ws2g8.png)
Where,
a = acceleration
r = length of the arm
Angular acceleration
As a = g then,
![g = r\omega^2](https://img.qammunity.org/2020/formulas/physics/college/6jx3xnv8iels2uzpm8fzxjny42fhfjay5a.png)
Where,
![\omega = \sqrt{(g)/(r)}](https://img.qammunity.org/2020/formulas/physics/college/766sq6op134zo27as225y4ysebbszq28sn.png)
![\omega = \sqrt{(1.3)/(4.25)}](https://img.qammunity.org/2020/formulas/physics/college/c7b4p49ti46melt5pky9b9mokj9tmsggz5.png)
![\omega = 0.553rad/s](https://img.qammunity.org/2020/formulas/physics/college/6w3n67epfqb705n36nqvpia3soq9jxe06p.png)
Therefore the angular speed of arm is 0.553rad/s