Answer:
![-(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/af4k56q28nkou3amiirp9z1lx2mbaoe18j.png)
Explanation:
The given function is
![y=3x+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n6nfwtp9ap3ri4benxsvmfqdypllqfwqn2.png)
We need to find all real zeros of the given function.
Equate y=0, to find all real zeros of the given function.
![3x+1=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lzpdfdgzj5jghl4vxnvd7zfpn97bc3jbvi.png)
Subtract 1 from both sides.
![3x+1-1=0-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z5498k1xpr355uzchn2fbjs90soeixqblo.png)
![3x=-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/odquyschiisw13oau8bi4mrm365du9hbmn.png)
Divide both sides by 3.
![(3x)/(3)=(-1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lm4ubb2kay5nl7zjj55rjw1zkjb6hi8ajr.png)
![x=-(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ttizv70fj2wf52tkifv85cyen9p488isuk.png)
Therefore, the real zero of the function is -1/3.