192k views
2 votes
A coil of area 0:2 m2and total resistance 100 is rotated at a rate of 60 rev/s. Its axis ofrotation is perpendicular to a 0:5 T magnetic eld. How many turns are in the coil if energyis delivered to it at a maximum rate of 1420 W?

1 Answer

5 votes

To solve this exercise it is necessary to apply the concepts given in the Faraday expressions and the induced voltage.

By definition the emf is given under the equation


\epsilon =NBA\omega


\omega =Angular Velocity

N = Number of Loops

B = Magnetic Field

A = Cross-Sectional Area.

At the same time we know that the rate of energy delivered is defined as,


P = (\epsilon^2)/(R)


\epsilon = √(PR)

Re-arrange the firs equation to find the number of loops and replacing the definition previously found we have,


N = (√(PR))/(BA\omega)


N = (√(1420*100))/(0.5*0.2*(60*2\pi))


N = 10

Therefore the number of turns in the coild if energy is delivered to it at a maximum rate of 1420W are 10 loops.

User Benjamin Wootton
by
5.5k points