Answer:
m∠DEC = 78°
Explanation:
Given information: AC = AD, AB⊥BD, m∠DAC = 44° and CE bisects ∠ACD.
If two sides of a triangles are congruent then the opposite angles of congruent sides are congruent.
AC = AD (Given)
![\angle ADC\cong \angle ACD](https://img.qammunity.org/2020/formulas/mathematics/high-school/it70xy28wbdxnw3jwub5amr7jx4rjq9g73.png)
![m\angle ADC=m\angle ACD](https://img.qammunity.org/2020/formulas/mathematics/high-school/je2gp1xhs61b5rxly9dvjaugwpfboj9t5h.png)
According to the angle sum property, the sum of interior angles of a triangle is 180°.
![m\angle ADC+m\angle ACD+m\angle DAC=180](https://img.qammunity.org/2020/formulas/mathematics/high-school/7pgm98ho54pa2n8dkivboaxjqpslmqpb4o.png)
![m\angle ACD+m\angle ACD+44=180](https://img.qammunity.org/2020/formulas/mathematics/high-school/j6se5qm5ct4hiidmhyps9ejjfoqfumg1sb.png)
![2m\angle ACD=180-44](https://img.qammunity.org/2020/formulas/mathematics/high-school/hboxqfo5ge4iayodkq5rorduajvw75fe5s.png)
![2m\angle ACD=136](https://img.qammunity.org/2020/formulas/mathematics/high-school/b4b003rqw2410goe7hlgi9elvfb4a9czki.png)
Divide both sides by 2.
![m\angle ACD=68](https://img.qammunity.org/2020/formulas/mathematics/high-school/v2pm5smknzhkfganewp4m4qg2on0ql4qmg.png)
CE bisects ∠ACD.
![m\angle ACE=m\angle DCE=(\angle ACD)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/nsyqrfxq8p33jssmvqvh2wofcjpqymabrn.png)
![m\angle ACE=m\angle DCE=(68)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7slt4wreqtcn5bvif58lqgqmm1eebpod23.png)
![m\angle ACE=m\angle DCE=34](https://img.qammunity.org/2020/formulas/mathematics/high-school/5nfq1thrceewnx1gc8qqoopeymtw396n7t.png)
Use angle sum property in triangle CDE,
![m\angle CDE+m\angle DCE+m\angle DEC=180](https://img.qammunity.org/2020/formulas/mathematics/high-school/c9am9efgbh5hppf7htjg4ge6hcnkkk0vf6.png)
![68+34+m\angle DEC=180](https://img.qammunity.org/2020/formulas/mathematics/high-school/h5tqtm5d9uy75vu28bt3u6op4sotpcdt18.png)
![68+34+m\angle DEC=180](https://img.qammunity.org/2020/formulas/mathematics/high-school/h5tqtm5d9uy75vu28bt3u6op4sotpcdt18.png)
![102+m\angle DEC=180](https://img.qammunity.org/2020/formulas/mathematics/high-school/h3sbas4lwlok6en294bujuq1sgco8fy6hi.png)
Subtract 102 from both sides.
![m\angle DEC=180-102](https://img.qammunity.org/2020/formulas/mathematics/high-school/e291vu7emzr80jn2oz1xgpv7i707ru5ihd.png)
![m\angle DEC=78](https://img.qammunity.org/2020/formulas/mathematics/high-school/q03vge5sw55vykeqdah90fs5drusyfjmwk.png)
Therefore, the measure of angle DEC is 78°.