Answer: (0.076, 0.140)
Explanation:
Confidence interval for population proportion (p) is given by :-
![\hat{p}\pm z_(\alpha/2)\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}](https://img.qammunity.org/2020/formulas/mathematics/college/pxj5zva1u6igd7xybc6x9ei113i3mgmyt5.png)
, where
= sample proportion.
n= sample size.
= significance level .
= critical z-value (Two tailed)
As per given , we have
sample size : n= 500
The number of Independents.: x= 54
Sample proportion of Independents
![\hat{p}=(x)/(n)=(54)/(500)=0.108](https://img.qammunity.org/2020/formulas/mathematics/high-school/tcihejqfod155hx10zet2idwtefhwgvl1m.png)
Significance level 98% confidence level :
By using z-table , Critical value :
The 98% confidence interval for the true percentage of Independents among Haywards 50,000 registered voters will be :-
![0.108\pm (2.33)\sqrt{(0.108(1-0.108))/(500)}\\\\=0.108\pm2.33*0.013880634\\\\=0.108\pm0.03234187722\\\\\approx0.108\pm0.032=(0.108-0.032,\ 0.108+0.032)=(0.076,\ 0.140)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ks63uj1oofwvfs4n9sqfil73cwh4f79vri.png)
Hence, the 98% confidence interval for the true percentage of Independents among Haywards 50,000 registered voters.= (0.076, 0.140)