Answer:
absolute max= (4.243,18)
absolute min =(-1,-5.916)
absolute max=(pi/6, 2.598)
absolute min = (pi/2,0)
Explanation:
a)
![f(t) = t√(36-t^2) \\](https://img.qammunity.org/2020/formulas/mathematics/college/b2a18sq3g3kzjnfl7v8k1s16yqrwr3zq8h.png)
To find max and minima in the given interval let us take log and differentiate
![log f(t) = log t + 0.5 log (36-t^2)\\Y(t) = log t + 0.5 log (36-t^2)](https://img.qammunity.org/2020/formulas/mathematics/college/he8o4c0j7gcu8rdgcx6jic3o5awqj96hry.png)
It is sufficient to find max or min of Y
![y'(t) = (1)/(t) -(t)/(36-t^2) \\\\y'=0 gives\\36-t^2 -t^2 =0\\t^2 =18\\t = 4.243,-4.243](https://img.qammunity.org/2020/formulas/mathematics/college/vxhu7mgypv0rnt4u6p6qfw54nfvbc3gm9j.png)
In the given interval only 4.243 lies
And we find this is maximum hence maximum at (4.243,18)
Minimum value is only when x = -1 i.e. -5.916
b)
![f(t) = 2cost +sin 2t\\f'(t) = -2sint +2cos2t\\f](https://img.qammunity.org/2020/formulas/mathematics/college/8cjohp70kb8y49yqci6jt07rqvjuwrkufv.png)
Equate I derivative to 0
-2sint +1-2sin^2 t=0
sint = 1/2 only satisfies I quadrant.
So when t = pi/6 we have maximum
Minimum is absolute mini in the interval i.e. (pi/2,0)