214k views
5 votes
I need help with this question

I need help with this question-example-1
User Mariam
by
8.6k points

1 Answer

0 votes

Answer:


$ (√(3) - 1)/(2√(2)) $


$ (-(√(3) + 1))/(2√(2)) $


$ - (√(3) - 1)/(√(3) + 1) $

Explanation:

Given
$ (11 \pi)/(12) = (3 \pi)/(4) + (\pi)/(6) $

(A)
$ sin((11\pi)/(12)) = sin ((3 \pi)/(4)  + (\pi)/(6)) $

We know that Sin(A + B) = SinA cosB + cosAsinB

Substituting in the above formula we get:


$ sin ((3\pi)/(4) + (\pi)/(6)) = (1)/(√(2)) . (√(3))/(2) + (-1)/(√(2)). (1)/(2) $


$ \implies (1)/(√(2)) ((√(3) - 1)/(2)) = (√(3) - 1)/(2√(2))

(B) Cos(A + B) = CosAcosB - SinASinB


$ cos((11\pi)/(12)) = cos((3\pi)/(4) + (\pi)/(6)}) $


$ \implies (-1)/(√(2)). (√(3))/(2) - (1)/(√(2)) . (1)/(2) $


$ \implies cos((11\pi)/(12)) = cos((3\pi)/(4) + (\pi)/(6)) $


$ = (-(√(3) + 1))/(2√(2))

(C) Tan(A + B) =
$ (Sin(A +B))/(Cos(A + B)) $

From the above obtained values this can be calculated and the value is
$ - (√(3) - 1)/(√(3) + 1) $.

User Eric Ressler
by
8.1k points