214k views
5 votes
I need help with this question

I need help with this question-example-1
User Mariam
by
8.2k points

1 Answer

0 votes

Answer:


$ (√(3) - 1)/(2√(2)) $


$ (-(√(3) + 1))/(2√(2)) $


$ - (√(3) - 1)/(√(3) + 1) $

Explanation:

Given
$ (11 \pi)/(12) = (3 \pi)/(4) + (\pi)/(6) $

(A)
$ sin((11\pi)/(12)) = sin ((3 \pi)/(4)  + (\pi)/(6)) $

We know that Sin(A + B) = SinA cosB + cosAsinB

Substituting in the above formula we get:


$ sin ((3\pi)/(4) + (\pi)/(6)) = (1)/(√(2)) . (√(3))/(2) + (-1)/(√(2)). (1)/(2) $


$ \implies (1)/(√(2)) ((√(3) - 1)/(2)) = (√(3) - 1)/(2√(2))

(B) Cos(A + B) = CosAcosB - SinASinB


$ cos((11\pi)/(12)) = cos((3\pi)/(4) + (\pi)/(6)}) $


$ \implies (-1)/(√(2)). (√(3))/(2) - (1)/(√(2)) . (1)/(2) $


$ \implies cos((11\pi)/(12)) = cos((3\pi)/(4) + (\pi)/(6)) $


$ = (-(√(3) + 1))/(2√(2))

(C) Tan(A + B) =
$ (Sin(A +B))/(Cos(A + B)) $

From the above obtained values this can be calculated and the value is
$ - (√(3) - 1)/(√(3) + 1) $.

User Eric Ressler
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories