To solve this problem it is necessary to apply the equations related to the Force of Friction and Energy.
By definition the friction force is defined as

Where,
Frictional Constant
N = Normal Force -> mg
At the same time we have the definition of the Energy, which can be
E = F*v
Where,
Force
v = Velocity.
Then replacing with our values we have that,

F = 0.5 *34
F = 17
The energy then would be,
E = f v
E = 17 * 0.30 = 5.1 W
Therefore the rate at which heat is generated is 5.1W