Answer:
The answer to your question is below
Explanation:
Pascal´s triangle
1 6 15 20 15 6 1
Then
(2a + 2b)⁶ = (2a)⁶ + 6(2a)⁵(2b) + 15(2a)⁴(2b)² + 20(2a)³(2b)³ + 15(2a)²(2b)⁴
6(2a)(2b)⁵ + (2b)⁶
Simplifying
= 64a⁶ + 6(32a⁵)(2b) + 15(16a⁴)(4b²) + 20(8a³)(8b³) + 15(4a²)(16b⁴)
6(2a)(32b⁵) + 64b⁶
= 64a⁶ + 384a⁵b + 960a⁴b² + 1280a³b³ + 960a²b⁴ + 384ab⁵ + 64b⁶