Answer:
8.4 V
Step-by-step explanation:
induced emf, e1 = 5.8 V
Magnetic field, B1 = 0.38 T
magnetic field, B2 = 0.55 T
induced emf, e2 = ?
As we know that the induced emf is directly proportional to the magnetic field strength.
When the other parameters remains constant then


e2 = 8.4 V
Thus, the induced emf is 8.4 V.