Answer:
Maximum at
![x =(√(7))/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/4zjwv7nc358l7kuk6nkqf1v4n8chlau9ac.png)
Explanation:
Given function,
![f(x) = 14x - 6x^3](https://img.qammunity.org/2020/formulas/mathematics/high-school/wm8r3he1yjcvkwdh1suvrk6g5ljy3jilh2.png)
Differentiating with respect to x,
![f'(x) = 14 - 18x^2----(1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ilpuva06dba7utftto1grskgxla4nsxhv3.png)
For critical values :
![f'(x) = 0](https://img.qammunity.org/2020/formulas/mathematics/college/n3rr0ui8ve99kvzbmcacft81fs4qemvaey.png)
![14 - 18x^2 =0](https://img.qammunity.org/2020/formulas/mathematics/high-school/i7udokcxhatqqvbg1j4sr126azjxbwo8nf.png)
![14 = 18x^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/4rld6nxcaohw7iwxt0utgwtq0mogw3xexd.png)
![x^2 = (14)/(18)](https://img.qammunity.org/2020/formulas/mathematics/high-school/m71x3rmka42qfchfnnnfay2rp37oqy7bxf.png)
![x^2=(7)/(9)](https://img.qammunity.org/2020/formulas/mathematics/high-school/d1ne5y4ytilutjuhtftetqjgul9tth46mo.png)
![x = \pm (√(7))/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/qatkt2t59dlkjvz7u344fklcej1f0v12oy.png)
Now, differentiating equation (1) again with respect to x,
![f''(x) = -36x](https://img.qammunity.org/2020/formulas/mathematics/high-school/90g2nsvkt5dw6a4b3lkbkdwj2d3tpt16r9.png)
Since,
![f''((√(7))/(3)) = -36((√(7))/(3)) < 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/wofpv2ilia6viuk96p059yaaqnq3lx6q9s.png)
This means that the function is maximum at
![x=(√(7))/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/k1c5z3mbqkbo16hvlylwbuwp2ckszbf9yt.png)
While,
This means that the function is minimum at
![x=-(√(7))/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/sm68znexvmccp38iq36oneb10we5p4z9cd.png)