Answer:
![m=1\\ \\n = -(10)/(13)\\ \\p=-(3)/(13)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q5g17v321uwlqsopwg4kec0pxikvua7gyu.png)
Explanation:
Given
![(x-37)/((x-1)(x+3)(x-10))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pvzf2qh5ddunn7huipzouyqayg9qmpuc3c.png)
Rewrite it in the form
![(m)/(x-1)+(n)/(x+3)+(p)/(x-10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/du2vqxqc18icrl8bb4ub7iyt6rkkmlw6r5.png)
To find
and
add these three fractions:
![(m(x+3)(x-10)+n(x-1)(x-10)+p(x-1)(x+3))/((x-1)(x+3)(x-10))\\ \\ \\=(m(x^2-10x+3x-30)+n(x^2-10x-x+10)+p(x^2+3x-x-3))/((x-1)(x+3)(x-10))\\ \\ \\=(mx^2-7mx-30m+nx^2-11nx+10n+px^2+2px-3p)/((x-1)(x+3)(x-10))\\ \\ \\=(x^2(m+n+p)+x(-7m-11n+2p)+(-30m+10n-3p))/((x-1)(x+3)(x-10))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7aiutlwnd9dkhvo7ootuge5403znhm2pnw.png)
This fraction and initial fraction are equal, they have the same denominators, so they have the same numerators:
![x^2(m+n+p)+x(-7m-11n+2p)+(-30m+10n-3p)=x-37](https://img.qammunity.org/2020/formulas/mathematics/middle-school/46xqcgre8q9km2qa5vuyii51drv5b1t2ft.png)
Equate coefficients:
![at \ x^2:\ \ m+n+p=0\\ \\at \ x:\ \ -7m-11n+2p=1\\ \\at\ 1:\ \ -30m+10n-3p=-37](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4rcf0shwsyvurp2ktvjsmioriheck4sr7p.png)
from the first equation:
![m=-n-p,](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fy6ekjqsq67up0j4049wpa66yvd4jb9yqk.png)
then
![\left\{\begin{array}{l}-7(-n-p)-11n+2p=1\\ \\-30(-n-p)+10n-3p=-37\end{array}\right.\\ \\ \\\left\{\begin{array}{l}7n+7p-11n+2p=1\\ \\30n+30p+10n-3p=-37\end{array}\right.\\ \\ \\\left\{\begin{array}{l}-4n+9p=1\\ \\40n+27p=-37\end{array}\right.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/na42gqqaw94tjxewhhk10etj6ktbm6241l.png)
Multiply the first equation by 10 and add it to the second equation:
![-40n+90p+40n+27p=10-37\\ \\117p=-27\\ \\13p=-3\\ \\p=-(3)/(13)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7r29hadz4gix0stpsf3dxydnqzzcshijcy.png)
Then
![-4n+9\cdor\left(-(3)/(13)\right)=1\\ \\ \\-4n=1+(27)/(13)\\ \\ \\-4n=(40)/(13)\\ \\ \\ n=-(10)/(13)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dkrvkrgyi2wmt4d6lydfy4019uzxgefx4s.png)
Hence,
![m=-\left(-(10)/(13)\right)-\left(-(3)/(13)\right)\\ \\m=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/geyuvhthwf18klnzdzf79khbes4mpvmxm3.png)
So,
![m=1\\ \\n = -(10)/(13)\\ \\p=-(3)/(13)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q5g17v321uwlqsopwg4kec0pxikvua7gyu.png)