Answer:
Maximum angle is
rad
Step-by-step explanation:
As per the question:
length of the pendulum, L = 0.30 m
Radius of the pendulum, R = 0.001 m
Angular speed at the bottom,
![\omega = 2.9\ rad/s](https://img.qammunity.org/2020/formulas/physics/high-school/eus3f0dubsyim67j5aznrbhj79jn0y8ln2.png)
Now,
To calculate the maximum angle,
:
For the pendulum, the moment of inertia, I =
![(ML^(2))/(3)](https://img.qammunity.org/2020/formulas/physics/high-school/61e0hwuab073fopdy42ozgi2p248ejci41.png)
Now, using the principle of the conservation of energy:
Kinetic energy = Potential energy
![(1)/(2)* I\omega^(2) = mgh](https://img.qammunity.org/2020/formulas/physics/high-school/4911moq7lhlh9if0h32lk3tkw6ev45bbb0.png)
where
h =
![(L)/(2)(1 - cos\theta_(m))](https://img.qammunity.org/2020/formulas/physics/high-school/4a5x0q1aqd2cgs2qopmmz6yvmcvge4o82d.png)
Thus
![(1)/(2)* (mL^(2))/(3)* \omega^(2) = m* 9.8* (L)/(2)(1 - cos\theta_(m))](https://img.qammunity.org/2020/formulas/physics/high-school/377ouozd8seq37b8h9z6637lnqzwwqvyxz.png)
![1 - cos\theta_(m) = (0.3* 2.9^(2))/(3* 9.8)](https://img.qammunity.org/2020/formulas/physics/high-school/alw7t72ppn1o7mr29vsmetk4soj0gvuh2y.png)
![theta_(m) = cos^(- 1)(0.914) = 23.91^(\circ)](https://img.qammunity.org/2020/formulas/physics/high-school/gl1523uf70blonohlo1zzpkr8xj6m0g59x.png)