89.2k views
1 vote
What is sin θ when sec θ = square root of 5? Rationalize the denominator if necessary.

What is sin θ when sec θ = square root of 5? Rationalize the denominator if necessary-example-1
User JayRizzo
by
5.0k points

2 Answers

4 votes

Answer:

4√5/5

Explanation:

from


(1)/( \ \cos( \alpha ) ) ?) = √(5)


{ \sin( \alpha ) }^(2) + { \cos( \alpha ) }^(2) = 1

dividing through by


{ \cos( \alpha ) }^(2)


{ \tan( \alpha ) }^(2) + 1 = (1)/(\cos( \alpha ) )


{ \tan( \alpha ) }^(2) = { √(5 ) }^(2) - 1


{ \tan( \alpha ) }^(2) = 5 - 4 = 4


\tan \alpha = √(4 ) = 2

but


\tan( \alpha ) = ( \sin( \alpha ) )/( \cos( \alpha ) )


2 = \sin( \alpha ) * (1)/( \cos( \alpha ) )


2 = \sin( \alpha ) * √(5)


\sin( \alpha ) = (2)/( √(5) )


\sin( \alpha ) = (2 √(5) )/(5)

User BoeseB
by
4.8k points
3 votes


\bf sec(\theta )=√(5)\implies \cfrac{1}{cos(\theta )}=√(5)\implies \cfrac{\stackrel{adjacent}{1}}{\stackrel{hypotenuse}{√(5)}}=cos(\theta )~\hfill \leftarrow \stackrel{\textit{let's find the}}{\textit{opposite side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm√(c^2-a^2)=b \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases}


\bf \pm\sqrt{(√(5))^2-1^2}=b\implies \pm√(5-1)=b\implies \pm√(4)=b\implies \pm 2=b \\\\[-0.35em] ~\dotfill\\\\ sin(\theta )=\pm\cfrac{\stackrel{opposite}{2}}{\stackrel{hypotenuse}{√(5)}}\implies \stackrel{\textit{rationalizing the denominator}}{\pm\cfrac{2}{√(5)}\cdot \cfrac{√(5)}{√(5)}\implies \pm\cfrac{2√(5)}{(√(5))^2}\implies \pm\cfrac{2√(5)}{5}}

User William Cuervo
by
5.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.