Answer:
1.) 9.9
2.) 15.6
Explanation:
1.) Consider triangle AEH
AEH is a right angle triangle as ∠AEH = 90°
AH is the hypotenuse of the triangle.
Applying Pythagorean theorem
![AE^(2) + EH^(2) = AH^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3p2vnctps5mlwei9mf7w82rhvg4nm7uq49.png)
substituting values as given in the question:
![7^(2) +EH^(2)=(7√(3) )^(2)\\EH^(2)=(7√(3) )^(2)-7^(2) \\EH^(2)=98\\EH=√(98)\\EH=7√(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gv57jgmsbyctem51ipftmybzz14edlmioi.png)
∴ EH≈9.9
2.) Consider triangle CDF
CDF is a right angle triangle as ∠CDF = 90°
CF is the hypotenuse of the triangle.
Applying Pythagorean theorem
![CD^(2) + DF^(2) = CF^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ibv61z31f6n4tr0n8yx8lgf1652o7y5xmp.png)
substituting values as given in the question:
![11^(2) +DF^(2)=(11√(3) )^(2)\\DF^(2)=(11√(3) )^(2)-11^(2) \\DF^(2)=242\\DF=√(242)\\DF=11√(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pakiz5fut3042t7sq14dgrpz6hrl5mijmh.png)
∴ DF≈15.6