Answer:
420 ft
Explanation:
The given equation of a parabola is
![y=630[1-\left((x)/(290)\right)^(2)]](https://img.qammunity.org/2020/formulas/mathematics/high-school/biffdxvwv8oyzmit2yk8yv1ffqyo2y9lxe.png)
An arch is 630 ft high and has 580=ft base.
Find zeroes of the given function.

![630[1-\left((x)/(290)\right)^(2)]=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/eqdwip5g2wd6yp5ljd6ddz6jnu528js6aw.png)




It means function is above the ground from -290 to 290.
Formula for the average height:

where, a is lower limit and b is upper limit.
For the given problem a=-290 and b=290.
The average height of the arch is
![\text{Average height}=(1)/(290-(-290))\int\limits^(290)_(-290) 630[1-\left((x)/(290)\right)^(2)]dx](https://img.qammunity.org/2020/formulas/mathematics/high-school/vau6r272zabxwrz1vghdu2btk2blv0k099.png)
![\text{Average height}=(630)/(580)[\int\limits^(290)_(-290) 1dx -\int\limits^(290)_(-290) \left((x)/(290)\right)^(2)dx]](https://img.qammunity.org/2020/formulas/mathematics/high-school/97p7s4ombc14yg19xyh9uubrabrdd499cq.png)
![\text{Average height}=(63)/(58)[[x]^(290)_(-290)-(1)/(84100)\left[(x^3)/(3)\right]^(290)_(-290)]](https://img.qammunity.org/2020/formulas/mathematics/high-school/atj9vr6wit2xmxz01z9yz6yukfsamm9bhu.png)
Substitute the limits.



Therefore, the average height of the arch is 420 ft above the ground.