146k views
17 votes
What is the solution?

What is the solution?-example-1
User Falconspy
by
2.8k points

1 Answer

6 votes

Answer:
32e^(4x)

=============================================

Work Shown:

Compute the first derivative


y = 2e^(4x)\\\\\\(dy)/(dx) = (d)/(dx)\left[2e^(4x)\right]\\\\\\(dy)/(dx) = 2*(d)/(dx)\left[e^(4x)\right]\\\\\\(dy)/(dx) = 2*4e^(4x)\\\\\\(dy)/(dx) = 8e^(4x)\\\\\\

Don't forget to apply the chain rule.

Now compute the second derivative


(d^2y)/(dx^2) = (d)/(dx)\left[(dy)/(dx)\right]\\\\\\(d^2y)/(dx^2) = (d)/(dx)\left[8e^(4x)\right]\\\\\\(d^2y)/(dx^2) = 8*(d)/(dx)\left[e^(4x)\right]\\\\\\(d^2y)/(dx^2) = 8*4e^(4x)\\\\\\(d^2y)/(dx^2) = 32e^(4x)\\\\\\

User Marie
by
3.7k points