Answer:
The number of available energy is
![4.820*10^(45)](https://img.qammunity.org/2020/formulas/physics/college/2djigah8gwypyfil11djit9nzi4491tm7f.png)
Step-by-step explanation:
Given that,
Energy
![E=4.9*10^(-4)\ J](https://img.qammunity.org/2020/formulas/physics/college/6nq2742y5bc2qwsx6fn1rmgp4ut2a687t6.png)
Temperature = 2.7 K
Energy states per unit volume
![dE=4*10^(-5)\ eV](https://img.qammunity.org/2020/formulas/physics/college/2sjvl67hdcwqu3j9w7k6b5zoutopzdw94c.png)
We need to calculate the number of available energy
Using formula of energy
![N=g(E)dE](https://img.qammunity.org/2020/formulas/physics/college/xnyn8p5m17yc87pj7n7puu2tvftgtmntkp.png)
![N=(8\pi* E^2 dE)/((hc)^3)](https://img.qammunity.org/2020/formulas/physics/college/yqsjf3a2g6oxtoqsmh6lxdu8hesgup2jkn.png)
Where, h = Planck constant
c = speed of light
E = energy
Put the value into the formula
![N=(8\pi*(4.9*10^(-4))^2*4*10^(-5)*1.6*10^(-19))/((6.67*10^(-34)*3*10^(8))^3)](https://img.qammunity.org/2020/formulas/physics/college/sdyo2t7igm9f2fdjr3qmrncqzb4ttwntlo.png)
![N=4.820*10^(45)](https://img.qammunity.org/2020/formulas/physics/college/29pof1vu82im24xfhkw30mfaz9tn4otrxf.png)
Hence, The number of available energy is
![4.820*10^(45)](https://img.qammunity.org/2020/formulas/physics/college/2djigah8gwypyfil11djit9nzi4491tm7f.png)