Answer:
![59.19 ft^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yk62axcnkp7deyykq5ftflefunt48qtsjx.png)
Explanation:
step 1
Find the area of the circle
The area of the circle is equal to
![A=\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2z11w6ajg8k9itft7shcdqinea4lmf008k.png)
we have
![r=7.2\ ft](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y5p90yr7343rqypzy7m6stfzia8q0rvj9x.png)
![\pi =3.14](https://img.qammunity.org/2020/formulas/mathematics/high-school/595myhvi9x0vjp0b1ku7bsoelmk1x8jihg.png)
substitute
![A=(3.14)(7.2)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zt8ww8la616j0wgzb2pp241ph29g2ibp7x.png)
![A=162.78\ ft^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cqa8a0dwzppkn4kx2rho89v4jnz11zaod1.png)
step 2
we know that
The area of a circle subtends a central angle of 2π radians
so
using proportion
Find out the area of a sector with a central angle of 8 π/11 radians
![(162.78)/(2\pi )(ft^2)/(rad) =(x)/((8\pi/11))(ft^2)/(rad) \\\\x=162.78(8/11)/2\\\\x=59.19\ ft^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3jmbp3o4ewhrhglyl7b7jeuvrnm0z8jzz0.png)