Answer:
![759.34\ m^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jj53w1b6no1i17up1y2s2abyq86cdhgdx1.png)
Explanation:
step 1
Find the area of the circle
The area of the circle is equal to
![A=\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2z11w6ajg8k9itft7shcdqinea4lmf008k.png)
we have
![r=18.4\ m](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nlqmy1o2wkksem8tji5ow0q1wffr2pyhwg.png)
substitute
![A=\pi(18.4)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4pkd4uupk6bc26720wbqoha9xbv47cinz0.png)
![A=338.56\pi\ m^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tmfw1wx1p5dut5ww5rqcydzp3v0njf85f4.png)
step 2
we know that
The area of complete circle subtends a central angle of 2π radians
so
using proportion
Find out the area of a sector with a central angle of 10π/7 radians
![(338.56\pi)/(2\pi ) =(x)/((10\pi/7))\\\\x=(10\pi/7)(338.56)/2\\\\x=241.829\pi\ m^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sg5tsoevjbsc0q5d9imlw9bdj446w6sydj.png)
use
![\pi =3.14](https://img.qammunity.org/2020/formulas/mathematics/high-school/595myhvi9x0vjp0b1ku7bsoelmk1x8jihg.png)
![241.829(3.14)=759.34\ m^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ot03q69v57xhzrubtx4xfj0bjlknslq9c6.png)