Answer:
411087.52089 J
![(K_r)/(K_b)=154.31213](https://img.qammunity.org/2020/formulas/physics/college/49lk10xvo7dcnwcdj37w3u8s72exzhupv7.png)
Step-by-step explanation:
R = Radius of Earth = 6370000 m
h = Altitude of satellite = 810 km
r = R+h = 63700000+810000 m
m = Mass of bullet = 3.7 g
Velocity of bullet = 1200 m/s
The relative velocity between the pellets and satellite is 2v
Now, the square of velocity is proportional to the kinetic energy
![K\propto v^2](https://img.qammunity.org/2020/formulas/physics/college/hsop36lhudr4ry08cnwxxynfj1vr02r34i.png)
![\\\Rightarrow 4K\propto (2v)^2\\\Rightarrow 4K\propto 4v^2](https://img.qammunity.org/2020/formulas/physics/college/g9a3xz5tfa8e9oy3rl2jr2djm0m98nmysz.png)
Kinetic energy in terms of orbital mechanics is
![K=(GMm)/(2r)](https://img.qammunity.org/2020/formulas/physics/college/wr74pyqg4pxxky42zpvrj51r03aki4oq2z.png)
In this case relative kinetic energy is
![K_r=4(GMm)/(2r)\\\Rightarrow K_r=2(6.67* 10^(-11)* 5.98* 10^(24)* 3.7* 10^(-3))/((6370+810)* 10^3)\\\Rightarrow K_r=411087.52089\ J](https://img.qammunity.org/2020/formulas/physics/college/4kqepp8vo0xvw356oo6pu7y8z8bhktsush.png)
The relative kinetic energy is 411087.52089 J
The ratio of kinetic energies is given by
![(K_r)/(K_b)=(411087.52089)/((1)/(2)* 3.7* 10^(-3)* 1200^2)\\\Rightarrow (K_r)/(K_b)=154.31213](https://img.qammunity.org/2020/formulas/physics/college/ytd7ttiqvzo3py3c5cxfwbxwqhi52wh0u6.png)
The ratio is
![(K_r)/(K_b)=154.31213](https://img.qammunity.org/2020/formulas/physics/college/49lk10xvo7dcnwcdj37w3u8s72exzhupv7.png)