Answer:
a. ΔHr = 696,8 kJ/mol
b. ΔHr = -1164,7 kJ/mol
c. ΔHr = -467,9 kJ/mol
Step-by-step explanation:
It is possible to obtain the standard enthalpy change of a reaction with the ΔH°f of products - ΔH°f reactants.
a. For the reaction:
N₂(g) + 3H₂O(l) → 2NH₃(aq) + ³/₂O₂(g)
ΔHr = 2ΔH°f NH₃(aq) + ³/₂ΔH°fO₂(g) - (3ΔH°fH₂O(l) + 2ΔH°f N₂(g))
ΔHr = 2×-80,3 kJ/mol + ³/₂×0 - (3×-285,8 kJ/mol + 0)
ΔHr = 696,8 kJ/mol
b. and c. For the reaction:
NH₃(aq) + 2CH₄(g) + ⁵/₂O₂(g) → NH₂CH₂COOH(s) + 3H₂O(l)
ΔHr = ΔH°fNH₂CH₂COOH(s) + 3ΔH°fH₂O(l) - (ΔH°fNH₃(aq) + 2ΔH°fCH₄(g) + ⁵/₂ΔH°fO₂(g))
ΔHr = -537,2kJ/mol + 3×-285,8 kJ/mol - (-80,3 kJ/mol + 2×-74,8kJ/mol+ ⁵/₂×0)
ΔHr = -1164,7 kJ/mol
c. From nitrogen, methane and oxygen the reaction is the sum of reactions of a and b:
N₂(g) + 3H₂O(l) → 2NH₃(aq) + ³/₂O₂(g)
+ NH₃(aq) + 2CH₄(g) + ⁵/₂O₂(g) → NH₂CH₂COOH(s) + 3H₂O(l)
N₂(g) + 2CH₄(g) + O₂(g) → NH₂CH₂COOH(s) + NH₃(aq)
By Hess's law, the ΔHr will be the sum of the ΔHr of the last two reactions, that means:
ΔHr = -1164,7 kJ/mol + 696.8 kJ/mol
ΔHr = -467,9 kJ/mol
I hope it helps!