Answer:
![10.82 kg-m^2](https://img.qammunity.org/2020/formulas/physics/college/e0upw6wqibrhkhv69ixi2b69mrc1vf36qe.png)
Step-by-step explanation:
Given
Mass of solid uniform disk
![M=13 kg](https://img.qammunity.org/2020/formulas/physics/college/ojuqsl5ghoe25kj0x0qwgp13o5sh0yaobj.png)
radius of disk
![r=1.25 m](https://img.qammunity.org/2020/formulas/physics/college/4gp5g6q3aylqwm63ktriw3arvilltbws2e.png)
mass of lump
![m=1.7 kg](https://img.qammunity.org/2020/formulas/physics/college/3zgvmhj2xy153f4c7nvabyc63gblotzi8y.png)
distance of lump from axis
![r_0=0.63](https://img.qammunity.org/2020/formulas/physics/college/vkuqt920ma7bvho70mgoxa1mzsyf6e7w6q.png)
Moment of inertia is the distribution of mass from the axis of rotation
Initial moment of inertia of disk
![I_1=(Mr^2)/(2)](https://img.qammunity.org/2020/formulas/physics/college/ngdv60tn32ez1c4m2tr45t793yrhwvdcw8.png)
![I_1=(13* 1.25^2)/(2)=10.15 kg-m^2](https://img.qammunity.org/2020/formulas/physics/college/sgv9trfb2grh49x4gycbh8h2yw85dvyg8t.png)
Final moment of inertia
=Moment of inertia of disk+moment of inertia of lump about axis
![I_f=(Mr^2)/(2)+mr_0^2](https://img.qammunity.org/2020/formulas/physics/college/7ljac65zyyzi7ys1v6iemflrlg4kieab3h.png)
![I_f=10.15+1.7* 0.63^2](https://img.qammunity.org/2020/formulas/physics/college/1dlc2rtnsmo0n25tey6pd9z3wsujrppjfr.png)
![I_f=10.15+0.674](https://img.qammunity.org/2020/formulas/physics/college/aa4fr58rz1w7wf8lgp16guz62cm2eds4ld.png)
![I_f=10.82 kg-m^2](https://img.qammunity.org/2020/formulas/physics/college/y32yx52x81sfsxgfgbftnlexggln9goqav.png)