2.4k views
0 votes
COMPLETING THE SQUARE

COMPLETING THE SQUARE-example-1
User Sachy
by
8.1k points

1 Answer

4 votes

Answer:

13.
x=1,-7

14.
x=-3+√(14) and
x=-3-√(14)

Explanation:

to solve the quadratic equation(
ax^(2) +bx+c=0) using completing the squares method:

Step1: divide the equation by a to make it in the form
x^(2) +(b)/(a)x+(c)/(a) =0

Step2: add
((b)/(2a))^(2) on both sides of the equation to get the eqaution:


x^(2) +(b)/(a)x+((b)/(2a))^(2) +(c)/(a)=((b)/(2a))^(2)

Step3: rearrange them to get the square.


(x+(b)/(2a) )^(2)=((b)/(2a))^(2)-(c)/(a)


x= -(b)/(2a)+\sqrt{((b)/(2a))^(2)-(c)/(a)} and


x= (b)/(2a)+\sqrt{((b)/(2a))^(2)-(c)/(a)}

Now getting on to the question:

13.
x^(2) +6x=7

a=1; b=6; c=-7

adding
(b)/(2a)^(2) = (6)/(2*1)^(2) =3^(2) =9 on both sides


x^(2) +6x+9=7+9


x^(2) +6x+9=16


(x+3)^(2)=16


x+3=√(16)


x+3=4 and
x+3=-4


x=1,-7

14.
x^(2) +6x=5

a=1; b=6; c=-5

adding
(b)/(2a)^(2) = (6)/(2*1)^(2) =3^(2) =9on both sides


x^(2) +6x+9=5+9


x^(2) +6x+9=14


(x+3)^(2)=14


x+3=√(14)


x+3=√(14) and
x+3=-√(14)


x=-3+√(14) and
x=-3-√(14)

User Almendar
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories