Answer:
m∠NQP=74°
Explanation:
we know that
The measure of the interior angles in a triangle must be equal to 180 degrees
In this problem
In the triangle NPQ
m∠N+m∠P+m∠Q=180°
we have
m∠N=(2x)°
m∠P=(34)°
m∠Q=(2x+2)°
substitute the values
![(2x)\°+(34)\°+(2x+2)\°=180\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9xps3o0reg7jk0an9az7ppvtxcfdv499eb.png)
solve for x
![(4x+36)\°=180\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hrou599ku92pninlge1mkpnsni59b71eun.png)
![4x=180-36](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6hcyiyr5ss805x0fd340dlr7pp7umj1o47.png)
![4x=144](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zakxtm3o5nluv5l8ltk4k3yzrs423v67r0.png)
![x=36](https://img.qammunity.org/2020/formulas/mathematics/high-school/dsk2dktzxv8nkynzews4bnf4v2u011wytt.png)
Find the measure of angle NQP
we know that
m∠NQP=m∠Q=(2x+2)°
substitute the value of x
m∠NQP=(2(36)+2)=74°