Answer:
![0.1546\leq \widehat{p}\leq 0.3513](https://img.qammunity.org/2020/formulas/mathematics/college/85m8mjgdowacqfu7oo93viy6m8qnggmx0y.png)
Explanation:
The firm tests 75 parts, and finds that 0.25 of them are notusable
n = 75
x = 0.25 \times 75 = 18.75≈19
![\widehat{p}=(x)/(n)](https://img.qammunity.org/2020/formulas/mathematics/college/pvl2uyxvgpn3snq9s93516pubs8bstgs2r.png)
![\widehat{p}=(19)/(75)](https://img.qammunity.org/2020/formulas/mathematics/college/i9bx4yco0c803scajv2lv9ogh2rkotnwo0.png)
![\widehat{p}=0.253](https://img.qammunity.org/2020/formulas/mathematics/college/wli6zzj9tzs64itin15l9oemacuaq6ex18.png)
Confidence level = 95%
So, Z_\alpha at 95% = 1.96
Formula of confidence interval of one sample proportion:
![=\widehat{p}-Z_\alpha \sqrt{\frac{\widehat{p}(1-\widehat{p}}{n}}\leq \widehat{p}\leq \widehat{p}+Z_\alpha \sqrt{\frac{\widehat{p}(1-\widehat{p}}{n}}](https://img.qammunity.org/2020/formulas/mathematics/college/8xk4rttsmb4ewjzqiejuvqvmzh5fod2fkj.png)
![=0.253-(1.96)\sqrt{(0.253(1-0.253))/(75)}\leq \widehat{p}\leq0.253+(1.96)\sqrt{(0.253(1-0.253)/(75)}](https://img.qammunity.org/2020/formulas/mathematics/college/bn38vaejixj185jqv4m8kct9szj2frsf7t.png)
Confidence interval
![=0.1546\leq \widehat{p}\leq 0.3513](https://img.qammunity.org/2020/formulas/mathematics/college/7g3c8pm3jei9luc5vs1rczx12wjew6u0hj.png)