219k views
2 votes
An empty capacitor is capable of storing 1.0 × 10-4 J of energy when connected to a certain battery. If the distance between the plates is halved and then filled with a dielectric (κ = 2.8), how much energy could this modified capacitor store when connected to the same battery?

User Fadmaa
by
8.4k points

1 Answer

0 votes

Answer:


5.6* 10^(-4)\ J

Step-by-step explanation:

d = Distance between capacitors

V = Voltage

k = Dielectric

A = Area


\epsilon_0 = Permittivity of free space

Energy the capacitor stores


E=(1)/(2)CV^2=1* 10^(-4)\ J

Capacitance is given by


C=(k\epsilon_0A)/(d)\\\Rightarrow C=(\epsilon_0A)/(d)

The new capacitance will be


C'=(k\epsilon_0A)/((d)/(2))\\\Rightarrow C'=(2.8\epsilon_0A)/((d)/(2))\\\Rightarrow C'=(2.8\epsilon_0A* 2)/(d)\\\Rightarrow C'=(5.6\epsilon_0A)/(d)\\\Rightarrow C'=5.6C

New energy will be


E'=(1)/(2)CV^2\\\Rightarrow E'=(1)/(2)5.6CV^2\\\Rightarrow E'=5.6(1)/(2)CV^2\\\Rightarrow E'=5.6E\\\Rightarrow E'=5.6* 1* 10^(-4)\\\Rightarrow E'=5.6* 10^(-4)\ J

The energy the modified capacitor store when connected to the same battery is
5.6* 10^(-4)\ J

User Seblucas
by
8.3k points