Answer: a) 0.079589 b) 0.079656
Explanation:
Since we have given that
Number of times a coin is flipped = 100 times
Number of times he get exactly head = 50
Probability of getting head =
![(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/g8uu853hd4xgpf51yzryheaugm47qujkf6.png)
We will use "Binomial distribution":
Probability would be
![^(100)C_(50)((1)/(2))^(50)((1)/(2))^50\\\\=0.079589](https://img.qammunity.org/2020/formulas/mathematics/college/mtyspmsbicdfnoukprb81hhxep2grsqgmg.png)
Using "Normal approximation":
n = 100
p = 0.5
So, mean =
![np=100* 0.5=50](https://img.qammunity.org/2020/formulas/mathematics/college/o40q0kwsd513d7thlsfuddc4zd9o4n1wcb.png)
Standard deviation is given by
![√(np(1-p))\\\\=√(50(1.05))\\\\=√(50* 0.5)\\\\=√(25)\\\\=5](https://img.qammunity.org/2020/formulas/mathematics/college/vn3owl16pokpdckurddetqtplvjgut41yi.png)
So,
![P(X<x)=P(Z<\frac{\bar{x}-\mu}{\sigma})\\\\So, P(X=50)=P(49.5<X<50.5)\\\\=P((49.5-50)/(5)<Z<(50.5-50)/(5))\\\\=P(-0.1<Z<0.1)\\\\=P(Z<0.1)-P(Z<-0.1)\\\\=0.539828-0.460172\\\\=0.079656](https://img.qammunity.org/2020/formulas/mathematics/college/ojpbu2yviv7pkmgqjjji3gy1e47n2thx8v.png)
Hence, a) 0.079589 b) 0.079656