Answer:
![\omega_f = 0.602\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/mb0cwslhtpoj45viry5qyuhwye1ptilpfr.png)
Step-by-step explanation:
given,
radius of merry- go- round = 2.80 m
moment of inertia = I = 2400 kg⋅m²
child apply force tangentially = 20 N
for time = 25 s
angular speed after 25 speed = ?
initial angular speed of the merry go round = 0 rad/s
we know,
torque = I α.............(1)
α is angular acceleration
and also
τ = F.r........................(2)
computing equation (1) and (2)
F . r = I α
![\alpha = (\omega_f - \omega_i)/(t)](https://img.qammunity.org/2020/formulas/physics/college/zvbn36k5v72v3bd06hdx17f943gb7r8ads.png)
![F . r =I * (\omega_f - \omega_i)/(t)](https://img.qammunity.org/2020/formulas/physics/college/52yw8804zuh1codsel1fbc4so5qsyvaef9.png)
![20 * 2.89 =2400* (\omega_f -0)/(25)](https://img.qammunity.org/2020/formulas/physics/college/55vhyqn67qvr2n58lxnp8oyw8mi8tst6fk.png)
![\omega_f = 0.602\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/mb0cwslhtpoj45viry5qyuhwye1ptilpfr.png)
the angular speed of merry-go-round after 25 second is equal to
![\omega_f = 0.602\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/mb0cwslhtpoj45viry5qyuhwye1ptilpfr.png)