Answer:
A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 447 gram setting.
![H_0:\mu = 447\\H_a:\mu\\eq 447](https://img.qammunity.org/2020/formulas/mathematics/college/e46qq2qjq0dn18iq2az7qkyu21c18wwx8g.png)
Mean =
![\mu = 447\\s = 21\\x = 443](https://img.qammunity.org/2020/formulas/mathematics/college/vjhdcxxaanrue3ocx8mzuvv4q29spopcbk.png)
n = 19
Since n < 30 , so we will use t test
![t=(x-\mu)/((s)/(√(n)))](https://img.qammunity.org/2020/formulas/mathematics/college/ci75u7dhmmaiegnly0gm2ww2goob14hxby.png)
Substitute the values :
![t=(443-447)/((21)/(√(19)))](https://img.qammunity.org/2020/formulas/mathematics/college/hlywlnqq4grgmkxp6salz9jl7pwm5s8deb.png)
![t=−0.8302](https://img.qammunity.org/2020/formulas/mathematics/college/oj7ee1nzgddkhmiz8edrhkousmbsqlv835.png)
t calculated = -0.830
degree of freedom = n-1 = 19-1 = 18
A level of significance=α=0.025
![t_{(df,(\alpha)/(2))}=2.093](https://img.qammunity.org/2020/formulas/mathematics/college/wpc1t85jxbg2pi1r1383vtpetot8ryekfa.png)
t critical = 2.093
t calculated < t critical
So, We failed to reject null hypothesis
Decision rule -0.830< 2.093 So, We failed to reject null hypothesis