Final answer:
The angular momentum of the ice skater spinning at 6.00 rev/s is 15.82 kg · m²/s. When the skater reduces their rate of spin to 1.95 rev/s, the moment of inertia is 1.29 kg · m². If the skater keeps their arms in and allows friction with the ice to slow them to 3.00 rev/s in 23.0 seconds, the average torque exerted is -0.343 N · m (indicating the direction of the torque).
Step-by-step explanation:
(a) The angular momentum of the ice skater can be calculated by multiplying the angular velocity (in radians per second) by the moment of inertia (in kg · m²). First, we need to convert the angular velocity from rev/s to rad/s. Since 1 rev = 2π rad, the angular velocity in rad/s is 6.00 rev/s * 2π rad/rev = 37.70 rad/s. Now, we can calculate the angular momentum: Angular momentum = angular velocity * moment of inertia = 37.70 rad/s * 0.420 kg · m² = 15.82 kg · m²/s.
(b) To find the new moment of inertia when the angular velocity decreases to 1.95 rev/s, we can rearrange the formula for angular momentum to solve for moment of inertia. Angular momentum = angular velocity * moment of inertia. Rearranging the equation: Moment of inertia = angular momentum / angular velocity = 15.82 kg · m²/s / (1.95 rev/s * 2π rad/rev) = 1.29 kg · m².
(c) To calculate the average torque exerted when the skater slows to 3.00 rev/s, we can use the equation torque = change in angular momentum / time. First, we need to calculate the change in angular momentum by subtracting the initial angular momentum from the final angular momentum. The initial angular momentum is 6.00 rev/s * 2π rad/rev * 0.420 kg · m² = 15.82 kg · m²/s, and the final angular momentum is 3.00 rev/s * 2π rad/rev * 0.420 kg · m² = 7.91 kg · m²/s. The change in angular momentum is 7.91 kg · m²/s - 15.82 kg · m²/s = -7.91 kg · m²/s. Finally, we can calculate the average torque: Torque = change in angular momentum / time = -7.91 kg · m²/s / 23.0 s = -0.343 N · m (negative sign indicates the direction of the torque).