Answer:
![0.12< \sigma<0.42](https://img.qammunity.org/2020/formulas/mathematics/college/y2j96c41mi9i2irkdieimgwhqlzk5q335x.png)
Explanation:
Confidence interval for standard deviation is given by :-
![\sqrt{(s^2(n-1))/(\chi^2_(\alpha/2))}< \sigma<\sqrt{(s^2(n-1))/(\chi^2_(1-\alpha/2))}](https://img.qammunity.org/2020/formulas/mathematics/college/77rl0q7on26p11zpqn2aygmltzykwdk1yo.png)
Given : Confidence level :
![1-\alpha=0.95](https://img.qammunity.org/2020/formulas/mathematics/college/gx79r1u49o76w9ryb7dmoo9j5upmsao470.png)
⇒
![\alpha=0.05](https://img.qammunity.org/2020/formulas/mathematics/college/o3op132eurfz836qnoznjuckj0omh3ecx4.png)
Sample size : n= 7
Degree of freedom = 6 (df= n-1)
sample standard deviation : s= 0.19
Critical values by using chi-square distribution table :
![\chi^2_(\alpha/2, df)}=\chi^2_(0.025, 6)}=14.4494\\\\\chi^2_(1-\alpha/2, df)}=\chi^2_(0.975, 6)}=1.2373](https://img.qammunity.org/2020/formulas/mathematics/college/jqlst1x7yom5bnln92nl0gtcv4ar6l3nfw.png)
Confidence interval for standard deviation of the weights of the packages prepared by the machine is given by :-
![\sqrt{( 0.19^2(6))/(14.4494)}< \sigma<\sqrt{( 0.19^2(6))/(1.2373)}](https://img.qammunity.org/2020/formulas/mathematics/college/rihxxpy4cmc9v9hxhd2ocadhiwvedrtft0.png)
![\Rightarrow0.12243< \sigma<0.418400](https://img.qammunity.org/2020/formulas/mathematics/college/yryom1pm6ir0n6ostmo3o8ez28mh3s98ku.png)
![\approx0.12< \sigma<0.42](https://img.qammunity.org/2020/formulas/mathematics/college/4jo18gv6c5txkpiss03f5w8nh2ggvhadpi.png)
Hence, the 95% confidence interval to estimate the standard deviation of the weights of the packages prepared by the machine. :
![0.12< \sigma<0.42](https://img.qammunity.org/2020/formulas/mathematics/college/y2j96c41mi9i2irkdieimgwhqlzk5q335x.png)