Answer:
The angular acceleration is 10.10 rad/s².
Step-by-step explanation:
Given that,
Mass of sphere =220 g
Diameter = 4.50 cm
Friction force = 0.0200 N
Suppose we need to find its angular acceleration.
We need to calculate the angular acceleration
Using formula of torque
![\tau=f* r](https://img.qammunity.org/2020/formulas/physics/college/rewy68wzrp1jta5ftc1k6iikvnstkcpxv4.png)
![I*\alpha=f* r](https://img.qammunity.org/2020/formulas/physics/college/f0np709jyptdt90e72odeatrmer3c5pzcz.png)
Here, I = moment of inertia of sphere
![(2)/(5)mr^2*\alpha=f* r](https://img.qammunity.org/2020/formulas/physics/college/w7f3od1wcfh3roxm37cxg65kyuor0rpxfz.png)
![\alpha=(5* f)/(2mr)](https://img.qammunity.org/2020/formulas/physics/college/xutvu2mejsq3cs6xo1sgsoi1tfv68su9ln.png)
Put the value into the formula
![\alpha=(5*0.0200)/(2*220*10^(-3)*2.25*10^(-2))](https://img.qammunity.org/2020/formulas/physics/college/b6bggkc0yhcvvb0mmregb6xuaqe2xrp5pr.png)
![\alpha=10.10\ rad/s^2](https://img.qammunity.org/2020/formulas/physics/college/lre0bfntk2bpefqkzyy17po5kzlz6hfo3x.png)
Hence, The angular acceleration is 10.10 rad/s².