Answer : The final temperature of the mixture is
![22.7^oC](https://img.qammunity.org/2020/formulas/chemistry/college/xbq75rpgncsozf5gji6e6u560bt0uku592.png)
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.
![q_1=-q_2](https://img.qammunity.org/2020/formulas/chemistry/high-school/mk1vcwtwe4jzngbsg68ybhk1xaxx9fkuyu.png)
![m_1* c_1* (T_f-T_1)=-m_2* c_2* (T_f-T_2)](https://img.qammunity.org/2020/formulas/chemistry/high-school/qgywtbsg7zz8q4mk2uwg02g7ku55zgjcxd.png)
And as we know that,
Mass = Density × Volume
Thus, the formula becomes,
![(\rho_1* V_1)* c_1* (T_f-T_1)=-(\rho_2* V_2)* c_2* (T_f-T_2)](https://img.qammunity.org/2020/formulas/chemistry/college/h9dlpy7nzbosfb7ula4owvpx0ltcrswuoy.png)
where,
= specific heat of ethanol =
![2.3J/g^oC](https://img.qammunity.org/2020/formulas/chemistry/college/p7fibnou50qq8b9oek37r9b7r42lc1bs45.png)
= specific heat of water =
![4.18J/g^oC](https://img.qammunity.org/2020/formulas/chemistry/middle-school/lvewetqp3qmg8njc0kzs8fx3hj66q24qx7.png)
= mass of ethanol
= mass of water
= density of ethanol = 0.789 g/mL
= density of water = 1.0 g/mL
= volume of ethanol = 45.0 mL
= volume of water = 45.0 mL
= final temperature of mixture = ?
= initial temperature of ethanol =
![9.0^oC](https://img.qammunity.org/2020/formulas/chemistry/college/de1r2f0by6nqv1aofy8ogokn9oqm5srn4z.png)
= initial temperature of water =
![28.6^oC](https://img.qammunity.org/2020/formulas/chemistry/college/v0uswd1o9aws7k1se1tt30otib57aacs2c.png)
Now put all the given values in the above formula, we get
![(0.789g/mL* 45.0mL)* (2.3J/g^oC)* (T_f-9.0)^oC=-(1.0g/mL* 45.0mL)* 4.18J/g^oC* (T_f-28.6)^oC](https://img.qammunity.org/2020/formulas/chemistry/college/hf9xpl5muose7duhrngevmg9991sjm2qlj.png)
![T_f=22.7^oC](https://img.qammunity.org/2020/formulas/chemistry/college/y03sapvk41056cjibpunvwci15u0cemzid.png)
Therefore, the final temperature of the mixture is
![22.7^oC](https://img.qammunity.org/2020/formulas/chemistry/college/xbq75rpgncsozf5gji6e6u560bt0uku592.png)